

# **Plant Archives**

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.360

# INFLUENCE OF POTTING MEDIA CONTAINING INDUSTRIAL BY-PRODUCTS ON GROWTH AND QUALITY OF *DRACAENA FRAGRANS* (L.) KER GAWL CV. MASSANGEANA

# Gunti Divya<sup>1\*</sup>, Zehra Salma<sup>2</sup>, G. Jyothi<sup>2</sup> and G. Sathish

<sup>1</sup>Department of Floriculture and Landscaping, Post Graduate Institution for Horticultural Sciences, Sri Konda Laxman Telangana Horticultural University, Siddipet - 502 279, Telangana, India.

<sup>2</sup>Floricultural Research Station, Sri Konda Laxman Telangana Horticultural University, Rajendranagar, Hyderabad - 500 030, Telangana, India.

<sup>3</sup>Department of Agricultural Statistics, Post Graduate Institution for Horticultural Sciences, Sri Konda Laxman Telangana Horticultural University, Siddipet - 502 279, Telangana, India.

\*Corresponding author E-mail: divyagunti20@gmail.com (Date of Receiving-24-07-2025; Date of Acceptance-29-09-2025)

**ABSTRACT** 

The present investigation entitled "Influence of potting media containing industrial by-products on growth and quality of *Dracaena fragrans* (L.) Ker Gawl cv. Massangeana" was carried out during the period January 2025 - May 2025 at Sri Konda Laxman Telangana Horticulture University, Floricultural Research Station, Rajendranagar, Hyderabad. The experiment was laid out in Completely Randomized Design (CRD) with nine treatments and replicated thrice. The treatments include different combinations of industrial by-products *viz.* vermicompost, perlite, vermiculite, cocopeat, press mud and fly ash in various combinations in volume basis. The data recorded includes growth and quality parameters at initial, 30, 60 and 90 days after planting. The Research findings revealed that treatment  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) recorded maximum plant height (9.70 cm), plant spread in E-W direction (16.78 cm) at 90 days after planting, initial and final root volume (2.00 ml and 2.50 ml), shoot fresh and dry weight (4.17 g and 0.72 g), leaf fresh weight (0.95 g), plant score on over all presentability (4.64) and B:C ratio (1: 0.51). The results revealed that  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) shows maximum influence on growth and quality parameters. It can be concluded that the treatment  $T_5$  was found to be a better alternative for replacing red soil in potting media in the nursery industry.

Key words: Dracaena, Industrial by-products, Press Mud, Fly ash, Perlite.

#### Introduction

Dracaena fragrans Massangeana is most widely used ornamental plant in landscaping, indoor, outdoor gardens, bouquet preparation and in decoration purpose. It is commonly known as Corn-Plant, Fragrant Dracaena. It belongs to family Agavaceae, native to Tropical Africa and grows in shade conditions. Flowers are white and open during night. Gilman (2007). As it is a widely used ornamental plant, it is chosen for our present investigation.

In today's nursery industry the major concern is depletion of red soil as it is excessively used for filling the polybags for transportation of nursery plants. Earlier the top fertile red soil was the only media used for nursery industry. But, over the few decades it has became a threat because of extensive use, the top layer of fertile red soil is being depleted. Hence, an alternative has to be chosen. Lot of research work has done on various nursery media mostly cocopeat as it is a widely used growing media in India due to its excellent water retention and cation exchange capacity (Wahlang *et al.*, 2024) and vermicompost improves soil fertility in physical, chemical, and biological ways (Lim *et al.*, 2015) is used now-adays as a cheap alternative.

Earlier, perlite holds water on its irregular surface areas (Boodley and Sheldrake, 1972) and vermiculite holds a lot of water and aids in drainage and aeration of the soil (Hussain et al., 2014) were also used but, because of their higher cost, their usage is minimal. However, a very meagre work has done on industrial bi-products like press mud as it is a soft, spongy, light weight, amorphous, dark brown to black coloured material. It generally contains 60-85% moisture. It can be used as a fertilizer and animal feed (Katiyar et al., 2016), increases microbial growth, increases soil aeration (Anjana and Dharsha, 2023) and protects the plants from soil borne diseases (Kumar et al., 2017) and fly ash alters the physical, chemical and biological properties of soil makes it an effective soil conditioner. (Sheoran et al., 2014). Indian Fly ash has low availability of Nitrogen and Phosphorus. Shaheen et al. (2014). It contains high concentration of toxic heavy metals like Cu, Zn, Cd, Pb, Ni and Cr. Rautaray et al. (2003) to be used as an alternative for red soil in the nursery industry.

So, in this research an attempt has been made to use industrial by-products in different combinations with cocopeat and vermicompost on volume basis to find out the effective combination of potting media that can be used in the nursey industry.

# **Materials and Methods**

The present study was conducted at Floricultural Research station, Sri Konda Laxman Telangana Horticultural University, Rajendranagar, Hyderabad, Telangana. The experiment was laid out in Completely Randomized Design (CRD) with nine treatments and replicated thrice.

| Treatments                          | Treatment Combinations (Volume/Volume)                             |
|-------------------------------------|--------------------------------------------------------------------|
| T <sub>1</sub> (Control)            | Cocopeat + Vermiculite + Perlite (33.3:33.3:33.3)                  |
| T <sub>2</sub>                      | Fly Ash + Vermicompost + Cocopeat (15:35:50)                       |
| T <sub>3</sub>                      | Fly Ash + Vermicompost + Cocopeat (20:30:50)                       |
| T <sub>4</sub>                      | Press Mud + Vermicompost + Cocopeat (25:25:50)                     |
| T <sub>5</sub>                      | Press Mud + Vermicompost + Cocopeat (45:15:40)                     |
| T <sub>6</sub>                      | Fly Ash + Press Mud + Cocopeat +<br>Vermicompost (12.5:37.5:25:25) |
| T,                                  | Fly Ash + Press Mud + Cocopeat +<br>Vermicompost (15:35:40:10)     |
| T <sub>8</sub>                      | Fly Ash + Press Mud + Cocopeat +<br>Vermicompost (20:45:25:10)     |
| T <sub>9</sub> (Nursery<br>Control) | Soil + Cocopeat + Vermicompost (50:25:25)                          |

The media was mixed thoroughly and filled in 7" pot. The two months old dracaena plantlets were transplanted into the pots during the evening time. Irrigation was given manually with rose can for every 3 days. Each potted plant was supplied with foliar nutrition (NPK 19:19:19 @ 1g/lt) and fungicide (Carbendazim 12%+Mancozeb 63% WP @ 2g/lt) at weekly intervals. The parameters recorded during initial, 30, 60 and 90 days of planting. The parameters include plant height, plant spread, number of leaves per plant, leaf width, leaf length, chlorophyll content, leaf fresh weight, shoot fresh and dry weight, root fresh and dry weight, root volume, root shoot ratio, number of days taken for full leaf expansion, plant score on overall presentability and benefit cost ratio.

#### **Results and Discussion**

# **Growth parameters**

# Plant height (cm)

The plant height was significantly maximum in  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (9.70 cm) during 90 DAP was presented in (Table:1). The better performance of potting media combination containing press mud, vermicompost, cocopeat and cocopeat with vermiculite and perlite at 90 days after planting might be due to Combination of perlite and vermiculite had the ability to provide adequate aeration in the root zone (Kazzaz and Kazzaz, 2017) and better nutrient availability due to higher cation exchange capacity of vermiculite (Hindman, 2006).

# Plant spread (cm)

The plant spread at north-south direction was maximum in  $T_1$  (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (17.02 cm) and at East - West Direction was maximum in  $T_5$  (Press Mud +

**Table 1 :** Influence of Potting media on plant height (cm) in *Dracaena fragrans*.

| Treatments     | Plant height (cm) |        |        |        |  |  |
|----------------|-------------------|--------|--------|--------|--|--|
|                | Initial           | 30 DAP | 60 DAP | 90 DAP |  |  |
| T <sub>1</sub> | 6.58              | 7.43   | 7.93   | 9.48   |  |  |
| T <sub>2</sub> | 5.90              | 6.05   | 5.81   | 7.18   |  |  |
| T <sub>3</sub> | 5.74              | 5.72   | 5.72   | 6.58   |  |  |
| T <sub>4</sub> | 6.06              | 6.65   | 8.48   | 9.09   |  |  |
| $T_5$          | 6.08              | 6.58   | 8.29   | 9.70   |  |  |
| T <sub>6</sub> | 5.83              | 6.90   | 6.58   | 7.43   |  |  |
| T <sub>7</sub> | 5.46              | 4.98   | 6.07   | 7.13   |  |  |
| T <sub>8</sub> | 5.42              | 5.13   | 5.31   | 6.03   |  |  |
| T <sub>9</sub> | 5.08              | 5.62   | 7.14   | 8.39   |  |  |
| SE(m) ±        | 0.48              | 0.43   | 0.47   | 0.56   |  |  |
| CD at 5%       | NS                | 1.28   | 1.39   | 1.65   |  |  |

|                | Plant spread (East-West and North-South) (cm) |       |       |       |                     |       |       |       |
|----------------|-----------------------------------------------|-------|-------|-------|---------------------|-------|-------|-------|
| Treatments     | Init                                          | tial  | 30 I  | DAP   | 60 I                | DAP   | 90 D  | OAP   |
|                | N-S                                           | E-W   | N-S   | E-W   | N-S                 | E-W   | N-S   | E-W   |
| T <sub>1</sub> | 9.92                                          | 13.88 | 13.88 | 14.58 | 15.77a              | 14.49 | 17.02 | 15.91 |
| T <sub>2</sub> | 11.38                                         | 12.25 | 11.61 | 11.58 | 12.07 <sup>b</sup>  | 11.10 | 11.54 | 11.20 |
| T <sub>3</sub> | 13.21                                         | 11.93 | 12.78 | 12.07 | 13.23 <sup>b</sup>  | 12.09 | 12.64 | 11.58 |
| T <sub>4</sub> | 12.92                                         | 12.25 | 12.81 | 13.12 | 14.23ab             | 13.86 | 15.95 | 15.26 |
| T <sub>5</sub> | 13.50                                         | 13.42 | 13.55 | 14.22 | 15.84ª              | 15.41 | 16.70 | 16.78 |
| T <sub>6</sub> | 13.96                                         | 13.00 | 13.51 | 13.13 | 14.16 <sup>ab</sup> | 13.02 | 12.68 | 12.55 |
| T,             | 11.96                                         | 12.25 | 12.32 | 12.48 | 12.39 <sup>b</sup>  | 12.58 | 11.98 | 12.37 |
| T <sub>8</sub> | 11.33                                         | 12.83 | 11.03 | 12.33 | 12.11 <sup>b</sup>  | 11.85 | 11.92 | 12.26 |
| T <sub>9</sub> | 11.83                                         | 11.71 | 13.69 | 12.56 | 14.43ab             | 13.06 | 15.20 | 14.74 |
| SE(m) ±        | 1.04                                          | 1.21  | 0.94  | 0.67  | 0.81                | 0.86  | 0.80  | 1.10  |
| CD at 5%       | NS                                            | NS    | NS    | NS    | 2.40                | NS    | 2.38  | 3.28  |

**Table 2 :** Influence of Potting media on plant spread (cm<sup>2</sup>) in *Dracaena fragrans*.

**Table 3 :** Influence of Potting media on number of leaves per plant in *Dracaena fragrans*.

| Treatments            | Number of leaves per plant |        |        |        |  |  |
|-----------------------|----------------------------|--------|--------|--------|--|--|
|                       | Initial                    | 30 DAP | 60 DAP | 90 DAP |  |  |
| T <sub>1</sub>        | 8.17                       | 8.33   | 8.83   | 9.08   |  |  |
| T <sub>2</sub>        | 7.33                       | 7.67   | 7.75   | 7.75   |  |  |
| T <sub>3</sub>        | 7.67                       | 8.25   | 8.25   | 8.25   |  |  |
| $T_4$                 | 8.58                       | 9.17   | 9.17   | 9.75   |  |  |
| T <sub>5</sub>        | 8.33                       | 8.83   | 9.17   | 9.50   |  |  |
| T <sub>6</sub>        | 8.08                       | 8.25   | 8.33   | 7.00   |  |  |
| <b>T</b> <sub>7</sub> | 8.00                       | 8.50   | 8.67   | 6.92   |  |  |
| T <sub>8</sub>        | 7.92                       | 8.00   | 8.00   | 8.33   |  |  |
| T <sub>9</sub>        | 7.33                       | 7.83   | 7.42   | 8.00   |  |  |
| SE(m) ±               | 0.37                       | 0.37   | 0.30   | 0.42   |  |  |
| CD at 5%              | NS                         | NS     | 0.90   | 1.26   |  |  |

Vermicompost + Cocopeat, 45:15:40 v/v) (16.78 cm) during 90 DAP was presented in (Table 2). The increase in number of leaves and leaf width might have resulted in maximum plant spread in media containing press mud, vermicompost and cocopeat. The high nutrient content and increased growth of beneficial bacteria in press mud can generate beneficial compounds and improve fertility of the media (MDiaz, 2016).

# Number of Leaves per plant

Number of Leaves per Plant was maximum in  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (8.00) during 90 DAP was presented in Table 3. The high nutrient content in press mud, vermicompost and porosity and water holding capacity of cocopeat in the media of  $T_5$  and  $T_4$  treatment might have encouraged rapid growth and tissue formation which might have resulted in increased number of leaves. Similarly, high

water holding capacity, good aeration of perlite and high potassium and magnesium in vermiculite (Hussain *et al.*, 2014) might have resulted in maximum number of leaves.

# Leaf width (cm)

Leaf Width was maximum in T<sub>1</sub> Control (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (3.23 cm) during 90 DAP was presented in Table 4). The high nutrient status and optimum pH of media containing press mud and vermicompost might have promoted faster cell division and expansion which resulted in maximum leaf width similarly good porosity and water holding capacity of perlite with high nutrient content in vermiculite aided in leaf expansion (Hussain *et al.*, 2014).

#### Leaf length (cm)

Leaf Length was recorded longest in  $T_1$  Control (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (17.08 cm) during 90 DAP was presented in Table 5. The leaf length followed the same pattern as leaf width because of similar reason. The media present in the treatment  $T_1$  and  $T_5$  might have support cell division and cell elongation which resulted in increased leaf length.

#### Chlorophyll content (SPAD)

Chlorophyll content T<sub>1</sub> Control (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (26.00) during 90 DAP was presented in Table 6. The highest chlorophyll content in treatments containing press mud, vermiculite, perlite, vermicompost and cocopeat might be due to efficient root uptake, balance between water retention and aeration. supports over all plant growth, leaf development, nutrient uptake. Therefore, might have resulted increased nitrogen content thereby the chlorophyll content was recorded high (Dubey *et al.*, 2013).

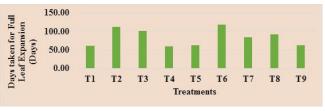


**Fig. 1:** Influence of potting media containing industrial byproducts on root growth of *Dracaena fragrans*.

**Table 4:** Influence of Potting media on Leaf width (cm) in *Dracaena fragrans*.

| Treatments       | Leaf width (cm) |        |        |        |  |
|------------------|-----------------|--------|--------|--------|--|
| Ti cutilitiis    | Initial         | 30 DAP | 60 DAP | 90 DAP |  |
| T <sub>1</sub>   | 2.80            | 2.78   | 2.92   | 3.23   |  |
| T <sub>2</sub>   | 2.60            | 2.33   | 2.63   | 2.72   |  |
| T <sub>3</sub>   | 2.58            | 2.43   | 2.46   | 2.63   |  |
| T <sub>4</sub>   | 2.90            | 2.68   | 2.80   | 2.83   |  |
| T <sub>5</sub>   | 2.82            | 2.65   | 2.82   | 2.61   |  |
| T <sub>6</sub>   | 2.74            | 2.76   | 2.68   | 2.54   |  |
| $\mathbf{T}_{7}$ | 2.53            | 2.58   | 2.69   | 2.79   |  |
| T <sub>8</sub>   | 2.79            | 2.38   | 2.53   | 2.63   |  |
| T <sub>9</sub>   | 2.42            | 2.57   | 2.50   | 2.41   |  |
| SE(m) ±          | 0.18            | 0.18   | 0.17   | 0.14   |  |
| CD at 5%         | NS              | NS     | NS     | 0.41   |  |

**Table 5 :** Influence of Potting media on leaf length (cm) in *Dracaena fragrans*.


| Treatments            | Leaf length (cm) |         |        |        |  |  |
|-----------------------|------------------|---------|--------|--------|--|--|
| 11 cutilicitus        | Initial          | 30 DAP  | 60 DAP | 90 DAP |  |  |
| T <sub>1</sub>        | 9.74             | 11.16   | 11.94  | 17.08  |  |  |
| T <sub>2</sub>        | 9.17             | 9.62    | 9.98   | 11.05  |  |  |
| T <sub>3</sub>        | 10.63            | 10.51   | 10.38  | 11.85  |  |  |
| $\mathbf{T_4}$        | 10.67            | 11.21   | 12.03  | 14.61  |  |  |
| <b>T</b> <sub>5</sub> | 11.40            | 11.85   | 11.98  | 15.52  |  |  |
| $T_6$                 | 9.67             | 10.24   | 10.41  | 12.09  |  |  |
| $\mathbf{T}_{7}$      | 9.86             | 10.06   | 10.43  | 11.40  |  |  |
| T <sub>8</sub>        | 8.71             | 8.98    | 9.19   | 10.28  |  |  |
| T <sub>9</sub>        | 9.67             | 10.41   | 10.46  | 13.16  |  |  |
| SE(m) ±               | 0.68             | 0.70    | 0.67   | 1.14   |  |  |
| <b>CD at 5%</b>       | NS               | S NS NS |        | 3.38   |  |  |

#### Leaf fresh weight (g)

Leaf fresh weight was recorded maximum in Treatment  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (0.95 g) which is at par with  $T_1$  Control (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (0.82 g),  $T_4$  (Press Mud + Vermicompost + Cocopeat, 25:25:50 v/v) (0.74 g),  $T_6$  (Fly Ash + Press Mud + Cocopeat + Vermicompost, 12.5:37.5:25:25 v/v) (0.66 g) and  $T_9$  (Soil + Cocopeat + Vermicompost, 50:25:25 v/v) (0.73 g) was presented in Table 7. However, lowest leaf

**Table 6:** Influence of Potting media on Chlorophyll content (SPAD) in *Dracaena fragrans*.

| Treatments            | Chlorophyll Content (SPAD) |        |        |        |  |  |
|-----------------------|----------------------------|--------|--------|--------|--|--|
| 11 cutilicités        | Initial                    | 30 DAP | 60 DAP | 90 DAP |  |  |
| $T_{_1}$              | 21.38                      | 27.93  | 24.78  | 26.00  |  |  |
| T <sub>2</sub>        | 20.38                      | 20.13  | 18.00  | 16.84  |  |  |
| $T_3$                 | 22.11                      | 21.08  | 20.28  | 16.93  |  |  |
| T <sub>4</sub>        | 21.15                      | 21.72  | 22.83  | 23.06  |  |  |
| <b>T</b> <sub>5</sub> | 19.63                      | 24.73  | 23.29  | 25.45  |  |  |
| $\mathbf{T}_{_{6}}$   | 21.95                      | 21.86  | 19.97  | 19.38  |  |  |
| <b>T</b> <sub>7</sub> | 21.54                      | 23.54  | 19.39  | 17.70  |  |  |
| $T_8$                 | 20.90                      | 20.02  | 19.14  | 18.55  |  |  |
| $\mathbf{T}_{9}$      | 22.47                      | 24.28  | 24.52  | 23.78  |  |  |
| SE(m) ±               | 1.00                       | 1.04   | 1.14   | 1.37   |  |  |
| CD at 5%              | NS                         | 3.11   | 3.39   | 4.08   |  |  |



**Fig. 2:** Influence of potting media containing industrial byproducts on days taken for full leaf expansion of *Dracaena fragrans*.

fresh weight (0.27 g) was recorded in  $T_2$  (Fly Ash + Vermicompost + Cocopeat, 15:35:50 v/v) (0.27 g) and ( $T_8$ ) Fly Ash + Press Mud + Cocopeat + Vermicompost (20:45:25:10 v/v) (0.33 g). Increased leaf parameters like leaf length, leaf width might have proportionately increased the leaf weight in treatments containing press mud, vermicompost, perlite and cocopeat. However, treatments containing high quantity of fly ash resulted lower leaf weight due to its under-performance in leaf parameter.

#### Shoot fresh and dry weight (g)

Shoot fresh weight was significantly maximum in  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (4.17 g) was presented in Table 7. The increased fresh shoot weight might be due to increased growth parameters viz., leaf length, leaf width, plant height recorded in the treatments earlier. So, there was a substantial increment in shoot fresh weight.

Shoot dry weight was recorded maximum in  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (0.72 g) was presented in Table 7. The shoot dry weight followed the same trend with respect to fresh weight. This holds that the biomass was proportionally influenced by the growth parameters.

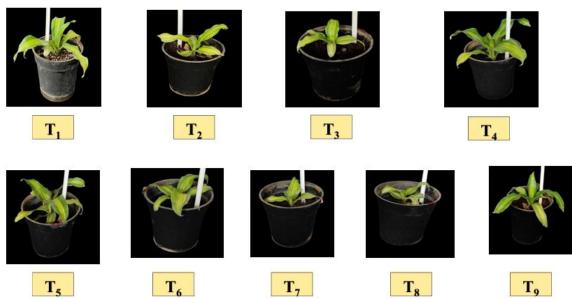



Fig. 3: Response of plants to different Treatment combinations.  $T_1$ : Cocopeat + Vermiculite + Perlite (33.3:33.3:33.3),  $T_2$ : Fly Ash + Vermicompost + Cocopeat (15:35:50),  $T_3$ : Fly Ash + Vermicompost + Cocopeat (20:30:50),  $T_4$ : Press Mud + Vermicompost + Cocopeat (25:25:50),  $T_5$ : Press Mud + Vermicompost + Cocopeat (45:15:40),  $T_6$ : Fly Ash + Press Mud + Cocopeat + Vermicompost (12.5:37.5:25:25),  $T_7$ : Fly Ash + Press Mud + Cocopeat + Vermicompost (15:35:40:10),  $T_8$ : Fly Ash + Press Mud + Cocopeat + Vermicompost (20:45:25:10),  $T_6$ : Soil + Cocopeat + Vermicompost (50:25:25).

**Table 7:** Influence of Potting media on root shoot ratio and number of days taken for full leaf expansion in *Dracaena fragrans*.

|                | _               |         |                  | •      |           | -         |          |
|----------------|-----------------|---------|------------------|--------|-----------|-----------|----------|
| Treatments     | Leaf weight (g) | Shoot w | Shoot weight (g) |        | ight (mg) | Root Volu | ume (ml) |
| 110401101105   | Fresh           | Fresh   | Dry              | Fresh  | Dry       | Initial   | Final    |
| T <sub>1</sub> | 0.82            | 3.96    | 0.62             | 443    | 126.7     | 1.50      | 2.00     |
| T <sub>2</sub> | 0.27            | 1.12    | 0.21             | 150    | 30.0      | 0.33      | 1.17     |
| T <sub>3</sub> | 0.45            | 2.21    | 0.41             | 420    | 90.0      | 1.33      | 1.17     |
| $T_4$          | 0.74            | 3.81    | 0.60             | 413    | 126.7     | 0.90      | 1.83     |
| $T_{5}$        | 0.95            | 4.17    | 0.72             | 697    | 153.33    | 2.00      | 2.50     |
| T <sub>6</sub> | 0.66            | 2.61    | 0.46             | 717    | 136.67    | 1.10      | 1.67     |
| <b>T</b> ,     | 0.42            | 1.75    | 0.30             | 353    | 70.00     | 0.30      | 1.00     |
| $T_8$          | 0.33            | 1.65    | 0.34             | 313    | 70.00     | 0.43      | 0.83     |
| T <sub>9</sub> | 0.73            | 2.74    | 0.47             | 553    | 120.00    | 1.27      | 1.83     |
| SE(m) ±        | 0.14            | 0.59    | 0.10             | 101.57 | 29.21     | 0.37      | 0.32     |
| CD at 5%       | 0.41            | 1.75    | 0.29             | 301.77 | NS        | NS        | 0.96     |

# Root fresh and dry weight (mg)

Root fresh weight was maximum in  $T_6$  (Fly Ash + Press Mud + Cocopeat + Vermicompost, 12.5:37.5:25:25 v/v) (720 mg) was presented in Table 7. The increased root fresh weight in the treatment with less fly ash and high press mud might be due to availability of high phosphorus and potassium in these industrial by products reported by MDiaz (2016) and Sheoran *et al.* (2014). The root dry weight among all the treatments was found to be statistically non-significant.

#### Root shoot ratio

All the treatment combinations were found to be on par with each other with respect to root shoot ratio. However, maximum root shoot ratio was observed in  $T_6$  (Fly Ash + Press Mud + Cocopeat + Vermicompost, 12.5:37.5:25:25 v/v) (0.27) was presented in Table 8. Increase in root weight than shoot weight resulted in highest root shoot ratio.

#### Root volume (ml)

Final root volume ratio was maximum in  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (2.50 ml) was presented in Table 7 and Fig. 1. The initial and final root volume was maximum in  $T_5$  might be due to high nutrient content, pore space and good aeration in the media. The media with press mud, vermicompost and cocopeat resulted in good aeration of media might of have

**Table 8:** Influence of Potting media on root shoot ratio and number of days taken for full leaf expansion in *Dracaena fragrans*.

| Treatments     | Root<br>Shoot<br>Ratio | Number of days taken for<br>Full Leaf Expansion (days) |
|----------------|------------------------|--------------------------------------------------------|
| T <sub>1</sub> | 0.11                   | 61.67                                                  |
| T <sub>2</sub> | 0.13                   | 112.67                                                 |
| T <sub>3</sub> | 0.19                   | 101.67                                                 |
| $T_4$          | 0.13                   | 60.00                                                  |
| $T_5$          | 0.16                   | 62.67                                                  |
| T <sub>6</sub> | 0.27                   | 117.67                                                 |
| T,             | 0.20                   | 85.00                                                  |
| T <sub>8</sub> | 0.19                   | 92.33                                                  |
| T <sub>9</sub> | 0.20                   | 62.00                                                  |
| SE(m) ±        | 14.29                  | 6.73                                                   |
| CD at 5%       | 18.17                  | 19.98                                                  |

**Table 9:** Influence of Potting media on plant score and number of benefit cost ratio in *Dracaena fragrans*.

| Treatments     | Plant Score | Benefit Cost Ratio |
|----------------|-------------|--------------------|
| T <sub>1</sub> | 4.24        | 1:0.29             |
| $T_2$          | 2.06        | 1:-0.10            |
| T <sub>3</sub> | 2.69        | 1:-0.06            |
| $T_4$          | 4.44        | 1:0.45             |
| T <sub>5</sub> | 4.64        | 1:0.51             |
| T <sub>6</sub> | 2.65        | 1:0.12             |
| T <sub>7</sub> | 3.31        | 1:-0.01            |
| T <sub>8</sub> | 2.92        | 1:0.05             |
| T <sub>9</sub> | 4.52        | 1:0.18             |
| SE(m) ±        | 0.32        |                    |
| CD at 5%       | 0.96        |                    |

resulted in production of more fibrous roots there by increasing its root volume.

#### Number of days taken for full leaf expansion

Number of days taken for full leaf expansion was earlier in  $T_4$  (Press Mud + Vermicompost + Cocopeat, 25:25:50 v/v) (60 days) which was at par with  $T_1$  Control (Cocopeat + Vermiculite + Perlite, 33.3:33.3:33.3 v/v) (61.67 days),  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (62.67 days),  $T_9$  (Soil + Cocopeat + Vermicompost, 50:25:25 v/v) (62.00 days) and delayed in  $T_6$  (Fly Ash + Press Mud + Cocopeat + Vermicompost, 12.5:37.5:25:25 v/v) (117.67 days) was presented in Table 8 and Fig. 2. Earlier leaf expansion in the treatments containing press mud, vermiculite, perlite and vermicompost might be due to faster uptake of nutrients and rapid cell division and elongation (Hussain *et al.*, 2014).

#### **Quality Parameter**

Among the media combinations the plant score was recorded maximum for  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (4.64) was presented in Fig. 3. The maximum score was recorded in  $T_5$  and  $T_4$  treatments due to their optimum shoot growth, plant spread, shiny healthy leaves and all together overall acceptance.

# **B:C** ratio

It is evident from the data that the highest B:C ratio was observed in treatment  $T_5$  (Press Mud + Vermicompost + Cocopeat, 45:15:40 v/v) (1: 0.45) was presented in Table 9. However, all other treatments recorded negative values which represents non-profitability. The lower cost of press mud and vermicompost along with its ability to enhance plant growth at a higher rate might have recorded them as profitable treatments. This could suggest that these potting media combinations can be explored to replace vulnerable depleting soil.

# Conclusion

It can be concluded that the treatment  $T_5$  (press mud + vermicompost + cocopeat, 45:15:40 v/v) followed by  $T_4$  (Press Mud + Vermicompost + Cocopeat, 25:25:50 v/v) was found to be most suitable for the growth and quality of Dracaena as well as beneficial on economic basis. The treatment  $T_1$  Control (Cocopeat + Vermiculite + Perlite 33.3:33.3:33.3 v/v) was also found at par in most of the parameters studied. However, the cost of vermiculite and perlite are higher.

It can be concluded that press mud can be used as a better alternative for red soil in nursery industry as a potting media in combination with cocopeat and vermicompost.

#### References

Anjana, P.A. and Dharsha Srinivasan V.S. (2023). Press mud. J. Res. Agricult. Anim. Sci., 10(11), 28-30.

Boodley, J.W. and Sheldrake R. (1972). *Cornell peat-lite mixes* for commercial growing.

Dubey, R.K., Simrat-Singh, Kukal S.S and Kalsi H.S. (2013). Evaluation of different organic growing media for growth and flowering of petunia. *Commun. Soil Sci. Plant Anal.* **44(12)**, 1777-1785.

El-Kazzaz, K.A. and El-Kazzaz A.A. (2017). Soilless agriculture a new and advanced method for agriculture development: an introduction. *Agricult. Res. Technol. Open Access J.*, **3(2)**, 63-72.

Gilman, E. (2007). *Dracaena fragrans* Massangeana Corn Plant, Fragrant Dracaena. *University of Florida*, **16(6)**, 1-3.

- Hindman, J.R. (2006). Vermiculite. In: Kogel J.E., Trivedi N.C., Barker M.J. and Krukowski S. (eds.). *Industrial minerals* and rocks, commodities, markets and uses (7th edition). Society of Mining, Metallurgy, and Exploration. 1015– 1026.
- Hussain, A., Iqbal K., Aziem S., Mahato P. and Negi A.K. (2014). A review on the science of growing crops without soil (soilless culture)-a novel alternative for growing crops. *Int. J. Agricult. Crop Sci.*, **7(11)**, 833.
- Katiyar, K., Singh S.K. and Sharma S. (2016). Sugar Press mud: Valuable Organic Compost for Sustainable Agriculture and Biodiversity Conservation. *Biochem. Cell. Arch.*, **16(1)**, 50-56.
- Kumar, S., Meena R.S., Jinger D., Jatav H.S. and Banjara T. (2017). Use of pressmud compost for improving crop productivity and soil health. *Int. J. Chem. Stud.*, **5(2)**, 384-389.
- Lim, S.L., Wu T.Y., Lim P.N. and Shak K.P.Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. *J. Sci. Food Agricult.*, **95(6)**, 1143-1156.

- MDiaz, P. (2016). Consequences of compost press mud as fertilizers. *DJ Int. J. Adv. Microbiol. Microbiolog. Res.*, **1**(1), 28-32.
- Rautaray, S.K., Ghosh B.C. and Mittra B.N. (2003). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard cropping sequence under acid lateritic soils. *Bioresource Technology*, **90(3)**, 275-283.
- Shaheen, S.M., Hooda P.S. and Tsadilas C.D. (2014). Opportunities and challenges in the use of coal fly ash for soil improvements—a review. *J. Environ. Manage.*, **145**, 249-267.
- Sheoran, Hardeep, Duhan Balraj and Kumar Amit (2014). Effect of Fly Ash Application on Soil Properties: A Review. **1(2)**, 98-103
- Wahlang Fenny, Joseph Annjoe and Mishra Saket (2024). The Influence of Container Types and Potting Media on the Biometric, Phenological and Yield Parameters of Strawberry cv. Winter Dawn. *J. Adv. Biol. Biotechnol.*, **27(6)**, 310-321.